A note on Witt groups for a Frobenius extension with involution
نویسندگان
چکیده
منابع مشابه
On the Witt Vector Frobenius
We study the kernel and cokernel of the Frobenius map on the p-typical Witt vectors of a commutative ring, not necessarily of characteristic p. We give many equivalent conditions to surjectivity of the Frobenus map on both finite and infinite length Witt vectors. In particular, surjectivity on finite Witt vectors turns out to be stable under certain integral extensions; this provides a clean fo...
متن کاملA note on quasi irresolute topological groups
In this study, we investigate the further properties of quasi irresolute topological groups defined in [20]. We show that if a group homomorphism f between quasi irresolute topological groups is irresolute at $e_G$, then $f$ is irresolute on $G$. Later we prove that in a semi-connected quasi irresolute topological group $(G,*,tau )$, if $V$ is any symmetric semi-open neighborhood of $e_G$, then...
متن کاملModel Theory of Frobenius on Witt Vectors
We give axiomatizations and quantifier eliminations for first-order theories of finitely ramified valued fields with an automorphism having a close interaction with the valuation. We achieve an analogue of the classical Ostrowski theory of pseudoconvergence. In the outstanding case of Witt vectors with their Frobenius map, we use the ∂-ring formalism from Joyal.
متن کاملA note on computing involution centralizers
For a black box group G and t an involution of G we describe a computational procedure which produces elements of CG(t) by making use of the local fusion graph F(G, X), where X is the G-conjugacy class of t.
متن کاملA Note on Quasi-Frobenius Rings
The Faith-Menal conjecture says that every strongly right Johns ring is QF . The conjecture is also equivalent to say every right noetherian left FP -injective ring is QF . In this short article, we show that the conjecture is true under the condition( a proper generalization of left CS condition) that every nonzero complement left ideal is not small( a left ideal I is called small if for every...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1981
ISSN: 0022-4049
DOI: 10.1016/0022-4049(81)90101-8